微积分(第2卷)英文版

  • 作者:张宇,黄艳
  • 责编:张永芹
  • ISBN:978-7-5603-5896-3
  • 出版日期:2016-3-1
  • 所属丛书:
  • 定价:48.00
  • 开本:16
  • 页数:307
  • 图书分类:Q.数学类
  • 中图分类:O数理科学和化学
  • 点击购买:
 

【内容提要】

本书为《微积分》一书的第二卷,适用于工科院校非数学专业本科新生,亦可作为工程技术人员的参考书籍.本卷包含四个章节,内容涵盖多元函数微分学,多元函数积分学,第二型曲线积分、第二型曲面积分及无穷级数.本书包含大量例题及习题.

【目  录】

Chapter 8 Differential Calculus of Multivariable Functions//1

8. 1 Limits and Continuity of Multivariable Functions//1

8. 2 Partial Derivatives and Higher-Order Partial Derivatives//8

8. 3 Linear Approximations and Total Differentials//15

8. 4 The Chain Rule//21

8. 5 Implicit Differentiation//26

8. 6 Applications of Partial Derivatives to Analytic Geometry//35

8. 7 Extreme Values of Functions of Several Variables//41

8. 8 Directional Derivatives and The Gradient Vector//53

8. 9 Examples//57

Exercises 8//61

Chapter 9 Multiple Integrals//74

9. 1 Double Integrals//74

9. 2 Calculating Double Integrals//78

9. 3 Calculating Triple Integrals//89

9. 4 Concepts and Calculations of The First Type Curve Integral//101

9. 5 The First Type Surface Integral//106

9. 6 Application of Integrals//111

9. 7 Examples//114

Exercises 9//119

Chapter 10 The Second Type Curve Integral, Surface Integral and Vector Field//131

10. 1 The Second Type Curve Integral//131

10. 2 The Green 's Theorem//140

10. 3 Conditions for Plane Curve Integrals Being Independent of Path , Conservative Fields//146

10. 4 The Second Type Surface Integral//154

10. 5 The Gauss Formula, The Flux and Divergence//162

10. 6 The Stokes' Theorem , Circulation and Curl//170

10. 7 ExampJes//177

Exercises 10//183

Chapter 11 Infinite Series//197

11. 1 Convergence and Divergence of Infinite Series //198

11. 2 The Discriminances for Convergence and Divergence of Infinite Series

with Positive Terms//205

11. 3 Series With Arbitrary Terms, Absolute Convergence//213

11. 4 The Discriminances for Convergence of Improper Integral, г Function//218

11. 5 Series with Function Terms, Uniform Convergence//223

11. 6 Power Series//231

11. 7 Expanding Functions as Power Series//240

11. 8 Some Applications of The Power Series//253

11. 9 Fourier Series//257

11. 10 Examples//273

Exercises 11//277

Appendix IV Change of Variables in Multiple Integrals//293

Appendix V Radius of Convergence of Power Series//300