数学分析原理

  • 作者:巴舍沃夫
  • 责编:张永芹
  • ISBN:978-7-5603-5758-4
  • 出版日期:2016-1-1
  • 所属丛书:
  • 定价:88.00
  • 开本:16
  • 页数:360
  • 图书分类:Q.数学类
  • 中图分类:O数理科学和化学
  • 点击购买:
 

【目  录】

1 Sets and Proofs 1

1.1 Sets, Elements, and Subsets 1

1.2 Operations on Sets 3

1.3 Language of Logic 4

1.4 Techniques of Proof 7

1.5 Relations 11

1.6 Functions 15

1.7* Axioms of Set Theory 18

Exercises 20

2 Numbers 25

2.1 System N 25

2.2 Systems Z and Q 29

2.3 Least Upper Bound Property and Q 32

2.4 System R 34

2.5 Least Upper Bound Property and R 37

2.6* Systems R, C, and *R 41

2.7 Cardinality 43

Exercises 47

3 Convergence 51

3.1 Convergence of Numerical Sequences 51

3.2 Cauchy Criterion for Convergence 53

3.3 Ordered Field Structure and Convergence 55

3.4 Subsequences 57

3.5 Numerical Series 59

3.6 Some Series of Particular Interest 62

3.7 Absolute Convergence 64

3.8 Number e 71

Exercises 74

4 Point Set Topology 79

4.1 Metric Spaces 79

4.2 Open and Closed Sets 83

4.3 Completeness 89

4.4 Separability 93

4.5 Total Boundedness 95

4.6 Compactness 96

4.7 Perfectness 100

4.8 Connectedness 103

4.9* Structure of Open and Closed Sets 104

Exercises 106

5 Continuity 113

5.1 Definition and Examples 113

5.2 Continuity and Limits 117

5.3 Continuity and Compactness 120

5.4 Continuity and Connectedness 121

5.5 Continuity and Oscillation 123

5.6 Continuity of Rk-valued Functions 124

Exercises 126

6 Space C(E, E_) 131

6.1 Uniform Continuity 131

6.2 Uniform Convergence 134

6.3 Completeness of C(E, E_) 137

6.4 Bernstein and Weierstrass Theorems 138

6.5* Stone and Weierstrass Theorems 142

6.6* Ascoli–Arzelà Theorem 144

Exercises 146

7 Differentiation 149

7.1 Derivative 149

7.2 Differentiation and Continuity 151

7.3 Rules of Differentiation 155

7.4 Mean-Value Theorems 158

7.5 Taylor’s Theorem 163

7.6* Differential Equations 165

7.7* Banach Spaces and the Space C1 (a, b) 169

7.8 A View to Differentiation in Rk 172

Exercises 174

8 Bounded Variation 177

8.1 Monotone Functions 177

8.2 Cantor Function 181

8.3 Functions of Bounded Variation 183

8.4 Space BV(a, b) 185

8.5 Continuous Functions of Bounded Variation 189

8.6 Rectifiable Curves 191

Exercises 192

9 Riemann Integration 195

9.1 Definition of the Riemann Integral 195

9.2 Existence of the Riemann Integral 199

9.3 Lebesgue Characterization 204

9.4 Properties of the Riemann Integral 207

9.5 Riemann Integral Depending on a Parameter 213

9.6 Improper Integrals 217

Exercises 220

10 Generalizations of Riemann Integration 225

10.1 Riemann–Stieltjes Integral 225

10.2* Helly’s Theorems 232

10.3* Reisz Representation 236

10.4* Definition of the Kurzweil–Henstock Integral 239

10.5* Differentiation of the Kurzweil–Henstock Integral 245

10.6* Lebesgue Integral 246

Exercises 250

11 Transcendental Functions 253

11.1 Logarithmic and Exponential Functions 253

11.2* Multiplicative Calculus 256

11.3 Power Series 262

11.4 Analytic Functions 268

11.5 Hyperbolic and Trigonometric Functions 274

11.6 Infinite Products 279

11.7* Improper Integrals Depending on a Parameter 287

11.8* Euler’s Integrals 295

Exercises 300

12 Fourier Series and Integrals 307

12.1 Trigonometric Series 307

12.2 Riemann-Lebesgue Lemma 310

12.3 Dirichlet Kernels and Riemann’s Localization Lemma 313

12.4 Pointwise Convergence of Fourier Series 315

12.5* Fourier Series in Inner Product Spaces 321

12.6* Cesàro Summability and Fejér’s Theorem 328

12.7 Uniform Convergence of Fourier Series 332

12.8* Gibbs Phenomenon 335

12.9* Fourier Integrals 338

Exercises 342

Bibliography 347